Extracting TSK-type Neuro-Fuzzy model using the Hunting search algorithm
نویسندگان
چکیده
Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.
منابع مشابه
First-order Interval Type-2 TSK Fuzzy Logic Systems Using a Hybrid Learning Algorithm
This article presents a new learning methodology based on a hybrid algorithm for interval type-2 TSK fuzzy logic systems (FLS). Using input-output data pairs during the forward pass of the training process, the interval type-2 TSK FLS output is calculated and the consequent parameters are estimated by recursive least-squares (RLS) method. In the backward pass, the error propagates backward, and...
متن کاملOnline Control of Nonlinear Systems using Neuro-Fuzzy Design tuned with Cooperative Particle Sub-Swarms Optimization
This paper proposes a TSK-type Neuro-Fuzzy system tuned with a novel learning algorithm. The proposed algorithm used an improved version of the standard Particle Swarm Optimization algorithm, it employs several sub-swarms to explore the search space more efficiently. Each particle in a sub-swarm correct her position based on the best other positions, and the useful information is exchanged amon...
متن کاملReinforcement Hybrid Evolutionary Learning for TSK-Type Neuro-Fuzzy Controller Design
This paper proposes a recurrent TSK-type neuro-fuzzy controller (TNFC) with reinforcement hybrid evolutionary learning algorithm (R-HELA). The proposed R-HELA combines the compact genetic algorithm (CGA) and the modified variable-length genetic algorithm (MVGA) to perform the structure/parameter learning for constructing the TNFC dynamically. The evolution of a population consists of three majo...
متن کاملChapter 14: Foundation of Neuro-Fuzzy Systems and an Engineering Application
This chapter discusses the foundation of neuro-fuzzy systems. First, we introduce Takagi, Sugeno, and Kang (TSK) fuzzy model [l,2] and its difference from the Mamdani model. Under the idea of TSK fuzzy model, we discuss a neuro-fuzzy system architecture: Adaptive Network-based Fuzzy Inference System (ANFIS) that is developed by Jang [3]. This model allows the fuzzy systems to learn the paramete...
متن کاملAn efficient immune-based symbiotic particle swarm optimization learning algorithm for TSK-type neuro-fuzzy networks design
In this paper, we propose a new learning algorithm that can be used to design TSK-type neuro-fuzzy networks. Though there has been a great deal of interest in the use of immune algorithms (IAs) for computer science and engineering, in terms of fundamental methodologies, they are not dramatically different from other algorithms. In order to enhance the IA performance, we propose the immune-based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. General Systems
دوره 43 شماره
صفحات -
تاریخ انتشار 2014